Advanced CUDA Optimizations
General Audience Assumptions

- General working knowledge of CUDA
- Want kernels to perform better
Profiling

- Before optimizing, make sure you are spending effort in correct location
- Nvidia Visual Profiler is run with nvvp
- This is a fantastic tool for optimizing performance
- Demo
Memory First

- Before looking at instructions/Math, get the memory accesses correct
- Comment out any logic in the program and make sure the memory accesses are coalesced and the throughput is where you expect
- This class focuses on optimizations after that point, but they won’t be helpful if the memory access is your bottleneck
Occupancy

- Occupancy refers to the utilization of the CUDA cores.
- Trying achieve 100% occupancy is a good first goal, but is not always the best. See website in References
- Look at occupancy spreadsheet
Shared Memory Bank Conflicts

Shared memory is divided into banks to allow each thread in a wrap access simultaneously. Each bank can service only one request at a time. The shared memory is interleaved by 32 bits or one float data type. The total number of banks is fixed at 32 for Compute 2.0 devices and later.
Shared Mem Bank Conflicts

Reading global memory into shared is a common task. The following may seem like a good way when thinking about CPU thread locality caching.

```c
int tid = threadIdx.x;
shared[2*tid] = global[2*tid];
shared[2*tid + 1] = global[2*tid + 1];
```

The following is the more correct way considering banking issues and coalescing:

```c
shared[tid] = global[tid];
shared[tid + blockDim.x] = global[tid + blockDim.x];
```
Shared Mem Bank Conflicts

Processing a 2D matrix with every thread working on a row

```c
__shared__ int shared[TILE_WIDTH][TILE_HEIGHT];
```
Registers vs Shared Memory

- In compute devices prior to 2.0, registers were not much faster than shared memory. The documentation suggests just using shared memory.
- In compute devices 2.0 +, the performance gap between registers and shared memory has increased significantly.
- To get the theoretical FLOPS of a device, values must be in registers.
All threads in a warp operate together. If you are only concerned with synchronizing the threads within a warp, the \texttt{__syncthreads()} function can be skipped. This function is useful in reduction cases; see below:

\begin{verbatim}
__device__ void warpReduce(volatile int* sdata, int tid) {
 sdata[tid] += sdata[tid + 32];
 sdata[tid] += sdata[tid + 16];
 sdata[tid] += sdata[tid + 8];
 sdata[tid] += sdata[tid + 4];
 sdata[tid] += sdata[tid + 2];
 sdata[tid] += sdata[tid + 1];
}
\end{verbatim}

NOTE - the warp size may change in future devices.
Shuffle

- Only available in Compute 3.0 + devices
- 3.0 devices have twice the shared memory bandwidth but 6x the number of CUDA cores
- Allows threads in a warp to share data faster than shared memory

```c
float __shfl( float var, // Variable you want to read from source thread
             int srcLane, // laneID of the source thread
             int width=warpSize // Division of warp into segments of size width
);
```

![Shuffle diagram](image-url)
Shuffle with Reduce

All threads will be shifting values even though they are not needed in the reduction. Only needed shifts shown.
Recalculate over lookup table

When optimizing CPU code, lookup tables are common. For example, if you only need 8192 distinct values on sine & cosine, a lookup table is generally faster. Lookup tables exploit the CPU cache hierarchy. But on the GPU there is little cache and lots of compute.

Example:
Recalculating the window for a triangle filter is faster than reading from memory
for (INT32 j = 0; j < filterLen; j++) {
 INT32 scaleI = ((j < (filterLen / 2)) ? (j + 1) : (filterLen - j));
 sum += smem[tid + j] * (FLOAT32)scaleI;
}
Templates

Branching is expensive. Templates can be used to make code more general while removing unneeded branching.

Template <unsigned int blockSize>

__device__ void warpReduce(volatile int* sdata, int tid) {
 if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
 if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
 if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
 if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
 if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
 if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
}

warpReduce<blockSize>(sdata, tid);

Note all items in red are evaluated at compile time.
Instruction Level Parallelism

- The scheduler can issue multiple instructions if they are independent. This is another way to hide memory latency.
- Compute devices 3.0 + require ILP to get theoretical FLOPS. Older devices still benefit.

```c
#pragma unroll UNROLL
for( int i = 0; i < N_ITERATIONS; i++ )
{
    a = a * b + c;
    d = d * b + c;
}
```
Device Callbacks

- New in CUDA 6.5
- Callback routines can be specified for loading and storing data during FFT operations.

Comparison before and after CUDA 6.5:

Before CUDA 6.5: 3 kernels, 3 memory roundtrips
- Read Input
- 8bit fixed to 32bit float conversion
- Write Output
- Read Input
- Perform FFT
- Write Output
- Read Input
- Convolve and Transpose
- Write Output

With CUDA 6.5: 1 kernel, 1 memory roundtrip
- Read Input
- 8bit fixed to 32bit float conversion
- Perform FFT
- Convolve and Transpose
- Write Output

Load Callback
- Store Callback
References

- http://acceleware.com/blog/keplers-shuffle-instruction